EIN EINFACHES LÖCHERMODELL DER FLÜSSIGKEITEN

W. A. P. LUCK* und W. DITTER

Hauptlaboratorium der Badischen Anilin- & Soda-Fabrik AG, Ludwigshafen/Rh.

(Received in Germany 27 July 1970; Received in the UK for publication 10 September 1970)

Zusammenfassung—Mit Hilfe eines Löchermodells werden in einfacher Weise die Eigenschaften unpolarer Flüssigkeiten abgeleitet. Formeln zur Berechnung der Dichte, der Verdampfungswärme und der Oberflächenspannung werden angegeben und mit der Erfahrung geprüft. Die Diskussion der potentiellen Energie dreier Punktladungen zeigt die Ursachen für die Leistungsfähigkeit dieses einfachen Modells.

Abstract—The properties of non-polar liquids are given by a simple hole model. Formulas for the determination of density, heat of vaporisation and the surface energy are calculated. The discussion of the potential energy of three point charges shows the reason for the efficiency of the simple model.

1. Der Schmelzpunkt

AM SCHMELZPUNKT ändert sich das Volumen bei den meisten Stoffen um ca 10% (vgl. Abb. 1). Die Molekelabstände ändern sich demnach also nur um ca 3%. Nach der empirischen Regel von Lorenz⁴ besteht für den Quotienten aus Schmelzvolumen $V_{\rm sch}$ und Volumen am absoluten Nullpunkt V_0 die Beziehung:

$$\frac{V_{\rm sch}}{V_0} = 1.21\tag{1}$$

Röntgenstreuergebnisse zeigen im Einklang mit der geringen Abstandsänderung beim Schmelzen Maxima der Dichteverteilung um ein Bezugsmolekül an Abständen, die der Lage der erst- und zweitnächsten Nachbarn im Kristall recht gut entsprechen (vgl. Abb. 2). Aus beiden experimentellen Ergebnissen kann auf eine gitterähnliche aber gestörte Anordnung der Molekeln in der Flüssigkeit geschlossen werden. Die Flüssigkeit unterscheidet sich bei derartigen Modellbetrachtungen vom Festkörper durch das Auftreten von Fehlstellen, die im Festkörper in kleinen Mengen ebenfalls diskutiert werden. Das Auftreten eines scharfen Schmelzpunktes hat Bresler⁵ im Rahmen dieser Modellvorstellung mit Hilfe von kooperativen Mechanismen deuten können. Unter der einfachsten Annahme, dass die Energie U zur Erzeugung einer Fehlstelle von der Grösse des vorhandenen Ordnungsgrades η linear abhängt, also mit

$$U = U_0 + \eta \cdot U_1 \tag{2}$$

erhielt Bresler⁵ mit Hilfe der statistischen Thermodynamik den in Abb. 3 gezeigten Zusammenhang zwischen Ordnungsgrad η und der Temperatur T. Die Kurve der Abb. 3 erinnert sofort an die van der Waals Gleichung im Zweiphasengebiet flüssigdampfförmig. Bresler deutet den Bereich der Vieldeutigkeit der Abb. 3 daher als den Phasenübergang fest-flüssig am Schmelzpunkt mit entsprechenden Unterkühlungsund Überhitzungsbereichen. Der scharfe Schmelzpunkt folgt also bei kooperativen Mechanismen aus einer sprunghaften Änderung des Ordnungsgrades.

Die Flüssigkeit zeigt beim Komprimieren und beim Dilatieren einen starken

^{*} New address: 355 Marburg; Inst. physik. chemie, Biegensh 12.

Widerstand, aber einen geringen Widerstand bei der Scherung. Wie ist dies zu verstehen? Hierzu kann folgende Modellbetrachtung dienlich sein: In der dichtesten Packung von Kugeln vom Radius R (Abb. 4B) ist der Abstand der 111-Ebenen: $h_B = 1.633 R$. Denkt man sich nun bei einem Festkörper in dichtester Kugelpackung mit steigender Temperatur eine Zunahme dieses Gitterabstandes infolge der thermischen Schwingungen, so liegen alle Kugeln in starker sterischer Hinderung; die 111-Ebenen können nicht übereinander weggleiten (Kristallzustand). Hat die mittlere Amplitude der Wärmeschwingungen jedoch so zugenommen, dass der Gitterebenenabstand auf 1.732 R zugenommen hat, so fällt die sterische Hinderung der Gleitung weg. (Abb. 4A) Die 111-Ebenen können jetzt ohne direkte sterische Hinderung übereinander gleiten. Das Volumen hat in diesem Fall zugenommen um einen Faktor:

$$\frac{V_{\rm sch}}{V_0} = \left(\frac{1.732}{1.633}\right)^3 = 1.19\tag{3}$$

Gl. 3 steht in gutem Einklang mit dem anhand der Mittelwertbildung aus 40 organischen Stoffen erhaltenen Wert 1.21 nach Gl. (1). Die diskutierte Modellbetrachtung erklärt einfach, dass Flüssigkeiten gegen Scherung wenig Widerstand leisten, wohl aber gegen Kompression und Dilatation, da in den beiden letzten Fällen die Molekeln aus ihrer Lage im Potentialminimum herausbewegt werden müssen.

ABB 1. ρ_{flussig} und ρ_{fest} für einige organische Stoffe mit Dichtesprung am Schmelzpunkt (nach Messdaten von Morgan⁹).

Bei einer weiteren Erhöhung der thermischen Schwingungsamplituden bis auf Erhöhung des Abstandes der 111-Ebenen auf 2 R (Abb. 4C) entfallen sterische Hinderungen in allen Richtungen. In diesem Fall beträgt die Volumenaufweitung

$$\frac{V_{\rm id\ K}}{V_{\rm o}} = \left(\frac{2}{1.633}\right)^3 = 1.837.$$

In dem anschliessend diskutierten Löchermodell der Flüssigkeiten beträgt das Volumen $V_{id K}$ der idealen Flüssigkeit am kritischen Punkt:

$$\frac{V_{\rm id \ K}}{V_{\rm 0}} = 1.75 \text{ bis } 1.8.$$

ABB 3. Ordnungsgrad $\eta = f(T)$ für kooperative Flüssigkeitsmodelle nach Bresler.⁵ Übergang M' - M Modell für Schmelzpunkt.

Aus empirischen Befunden der Abb. 1 ist der thermische Ausdehnungskoeffizient der Festkörper in vielen Fällen gerade um so viel kleiner wie der der Flüssigkeiten, so dass die auf $T = 0^{\circ}$ K extrapolierten Dichten von Flüssigkeit und Kristallzustand sich etwa bei $T = 0^{\circ}$ schneiden. Aus der auf $T = 0^{\circ}$ K extrapolierten Dichte kann also das Nullpunktsvolumen abgeschätzt werden.

B: Dichteste Kugelpackung als Modell für Festkörper. h_B: Netzebenenabstand. A: Bei Aufweitung des Netzebenenabstandes auf h_A fällt sterische Hinderung bei Bewegung senkrecht zur Zeichenebene weg (Modell für Flüssigkeiten). C: Bei Aufweitung des Netzebenenabstandes auf h_C ist sterische Hinderung bei Bewegung in

allen Richtungen aufgehoben (Modell für Gase).

ABB 5. ρ_{fhussig} und ρ_{Dempf} unter Sättigungsbedingungen. $\rho_{\text{fl}} + \rho_{\text{D}} = a - b.T \equiv \text{Dichte der}$ idealen Modellflüssigkeit.

Авв 6. Einfaches Löchermodell der Flüssigkeiten. Links: Lochkonz. in Fl. = Molekelkonz. im Dampf. Rechts: Dampfkonz. wird erniedrigt prop. der in Lösungsmittellöchern gelösten Fremdmolekeln (Modell f. Raoult'sches Gestz).

2. Das Löchermodell

Nach Cailletet-Mathias ist das arithmetische Mittel aus Dampfdichte ρ_D und Flüssigkeitsdichte ρ_{Fl} bekanntlich für Sättigungsdichten eine lineare Temperaturfunktion, aus der gerne die kritische Dichte abgeschätzt wird. Die Linearität von

$$\rho_{\rm D} + \rho_{\rm Fl} = c - b \cdot T \tag{4}$$

gilt recht genau für sehr viele Stoffe. Ausnahmen sind z.B. Wasser, Essigsäure und einige Amine. Der Anstieg der Graden nach Gl. (4) entspricht der Änderung von ρ_{F1} bei tiefen Temperaturen (vgl. Abb. 5). Hieraus kann nun ein einfaches Flüssigkeitsmodell entwickelt werden (vgl. auch ⁶⁻⁸). Die Grade $\rho_{F1} + \rho_D$ sehen wir als die Dichte einer idealen Flüssigkeit, die wir so definieren, dass ihre Dichte nur durch Wärmeschwingungen mit der Temperatur abnimmt. Die reale Flüssigkeit unterscheidet sich von der realen Modellflüssigkeit durch das Vorhandensein von Fehlstellen. Die Konzentration an Fehlstellen der idealen Modellflüssigkeit ist dann identisch mit der Konzentration an Molekeln im Dampfraum (vgl. Abb. 6). Der Bruchteil F an Gitterplätzen, die Fehlstellen sind, beträgt

$$F = \frac{\rho_{\rm D}}{\rho_{\rm Fl} + \rho_{\rm D}}$$

Aus diesem Modell folgt das Raoultsche Gesetz für die Dampfdruckerniedrigung proportional zur Konzentration an gelösten Stoffen. Lösen wir in der flüssigen Phase des Löchermodells Fremdmolekeln, deren Eigendampfdruck vernachlässigt werden kann und deren Grösse sich nicht wesentlich von der der Lösungsmittelmolekeln unterscheidet, so werden sich diese Fremdmolekeln in den Löchern ansammeln. Aufgrund des Modells muss dann die Zahl der Dampfmolekeln zur Zahl der gelösten Molekeln abnehmen. Für grosse Molekeln (z.B. Makromolekeln) ist eine kleinere Dampfdruckerniedrigung zu erwarten.

Im reduzierten Masstab gilt austelle von Gl. (4):

$$\frac{\rho_{\rm FI} + \rho_{\rm D}}{\rho_{\rm K}} = \frac{\rho_0}{\rho_{\rm K}} - \left(\frac{\rho_0}{\rho_{\rm K}} - 2\right) \frac{T}{T_{\rm k}} \tag{5}$$

wobei ρ_0 die Dichte für $T = 0^{\circ}$ K ist. Nach dem Theorem der übereinstimmenden Zustände ist für $c = \rho_0 / \rho_K$ ein konstanter Wert zu erwarten. In Wirklichkeit steigt c jedoch langsam mit T_k an. In groben Zügen kann man eine empirische Zahlenwert-Gleichung angeben:

$$c \sim 1.53 + 0.86 \log T_k$$
 (6)

Für die für die organische Chemie interessanten Stoffe im Bereich $500^{\circ}K < T_k < 800^{\circ}K$ ist

$$\frac{\rho_0}{\rho_{\rm K}} = c \sim 4 \tag{7}$$

Für He³ ist c etwa 2 (c = 1.9934); $\rho_{Fl} + \rho_D$ ist beinahe temperaturunabhängig. Im Löchermodell bedeutet dies also, dass alle Wärmezufuhr zur Erzeugung von Fehlstellen dient, dass keine Wärmeenergie in Bewegungsenergie der Molekeln umgesetzt wird. Dies wäre im Zusammenhang mit der grossen Nullpunktsenergie im Vergleich zu den relativ geringen zwischenmolekularen Wechselwirkungen zu diskutieren.

Etwas ähnliches gilt für He⁴ II, während für He⁴I c = 2.295 ist. Bei T_k ist

$$\rho_{\rm FI} = \rho_{\rm D} = \rho_{\rm K}, \text{also} \frac{\rho_{\rm FI} + \rho_{\rm D}}{\rho_{\rm K}} = 2$$

Die Fehlstellenkonzentration erreicht mit 50% die Konzentration der Dampfmolekeln. Eine weitere Erhöhung der Fehlstellenkonzentration würde für das Löchermodell zu der physikalisch irrealen Aussage führen, dass die Dampfdichte grösser wird als die Flüssigkeitsdichte. Real treten mit dem Verschwinden der Flüssigkeitsphase starke Dichteschwankungen im Dampfraum auf, die zu starken Dichtegradienten Anlass geben können.¹¹

Aus dem Modell für Flüssigkeiten einer dichtesten Kugelpackung mit Fehlstellenproportional zu T—kann man aus ρ und der Geometrie der dichtesten Kugelpackung die mittleren Molekelabstände D berechnen:

$$D(\dot{A}) = 1.3265 \cdot \sqrt[3]{(M/\rho)}$$
(8)

Abb 7 zeigt die Auswertung der Gl. (8) für drei verschiedene Stoffe, normiert auf kritische Werte T_k und den Abstand D_k für T_k , wobei als Absolutwerte gelten:

Stoff	$D_{k}(\dot{A})$	$D_{0}(\mathbf{A})$
He ³	5.47	4 35
Н,	5.32	3.76
CCI₄	8.64	5.53

206

Die in der letzten Spalte angegebenen D_0 -Werte sind die auf T = 0 extrapolierten Werte der Kurventeile. Die linken Kurventeile wurden erhalten aus ρ_{F1} und die rechte aus ρ_D . Die Punkte der linken Kurventeile in Abb. 7 entsprechen den mittleren Molekelabständen in der Potentialkurve der zwischenmolekularen Wechselwirkung. Diese sind entsprechend der Anharmonizität des Potentials (z.B. Lennard-Jones Potential) von T abhängig. D_0 entspricht dem Energieminimum, das bei T = 0erreicht wird. Es ist daher $D_0 \sim 1.122 \cdot \delta \cdot 0.972$.* Die Gleichgewichtsdampfabstände (rechte Kurvenzüge) können so interpretiert werden, dass für jede Temperatur ein Abstand existiert, bei dessen Unterschreitung E_{pot} kleiner wird als die kinetische Energie $\frac{3}{2} kT$, so dass dann Kondensation eintritt. Wegen der Proportionalität zwischen $E_{pot} \sim 1/r^6$ und der Geschwindigkeitsverteilung der Wärmebewegung ist die Berechnung eines korrespondierenden Mittelwertes über r entsprechend kompliziert.

ABB 7. Mittlere Molekelabstände D aus D (Å) = $1.32 \cdot \frac{\sqrt[3]{(M)}}{\sqrt[3]{(\rho)}}$ im reduzierten Massstab.

Rechte Kurvenseite: Sättigungsdampf.

Im Löchermodell müsste man die mittleren Abstände D_L der 'Gitterplätze' entsprechend berechnen aus:

$$D_L = 1.326 \cdot \sqrt[3]{\left(\frac{M}{\rho_{\rm FI} + \rho_{\rm D}}\right)}$$
(9)

Am kritischen Punkt ist

 $D_k \sim 1.25 D_{kL}$; es ist ferner $D_{kL} \sim 1.22 D_0$.

3. Die Verdampfungswärme

Zur Abschätzung der Verdampfungswärme L_p nach dem Löchermodell ist diese zunächst um die Arbeit $p\Delta V$ gegen den äusseren Druck zur inneren Verdampfungswärme L_i zu korrigieren:

$$L_i = L_p - p\Delta V \tag{10}$$

[•] σ ist der Abstand, für den nach dem Lennard-Jones Potential die zwischenmolekulare Wechselwirkung Null ist; 1.122 σ entspricht dem Energieminimum zwischen zwei Molekeln nach Lennard-Jones. Der Faktor 0.972 ist nach Eucken¹² für kondensierte Materie bei der Aufsummierung über alle Nachbarn als Korrektur einzuführen.

Bis zum Siedepunkt T, kann hierbei in guter Näherung gesetzt werden :*

für $T < T_{\star}$ $p\Delta V \sim RT$.

Nach dem Löchermodell ist zu erwarten:

$$L_{i} = \frac{ZfR}{2} \left(\frac{3}{2}T_{k} - T\right) (1 - 2F)$$
(11)

Kurze Ableitung: Wenn Z die Zahl der erstnächsten Nachbarn in der idealen Modellflüssigkeit ist, so ist Z(1 - F) die Koordinationszahl in der realen Flüssigkeit. Die Wechselwirkung der erstnächsten Nachbarn auf ein Bezugsmolekül ist: $Z(1 - F) E_{pot}$. Aus der Bedingung, dass am kritischen Punkt Assoziation der Molekeln eintritt, wenn $E_{pot} < \frac{3}{2}kT_{K}$, kann die Gesamtwechselwirkung bei Aufsummierung über ein Mol geschrieben werden: $< Z(1 - F) \frac{3}{2}RT_{K}/2$. Hierbei ist ein Faktor 2 zu berücksichtigen, um ein Doppeltzählen der Molekeln zu vermeiden. Der Durchgriff fernerer Nachbarn kann mit dem Korrekturfaktor f berücksichtigt werden (Er ist in der Grössenordnung 1,1 zu erwarten, vgl.¹²).

Bei höheren T, damit höheren Dampfdrucken, besteht auch im Dampfzustand eine nicht zu vernachlässigende zwischenmolekulare Wechselwirkung. Diese kann in derselben Näherung angesetzt werden als : $ZfF \frac{3}{2}(RT_k/2)$. Die gegen die potentielle Energie der zwischenmolekularen Kräfte beim Verdampfen in den Sättigungszustand zu leistende Arbeit ist also damit : $Zf(1 - 2F)(3RT_k/4)$. Für den Wärmeinhalt der zwischenmolekularen Freiheitsgrade hat sich nun der Ansatz bewährt : (Z'/2)RTf,

wobei in der realen Flüssigkeit: Z' = Z(1 - F)fund im realen Dampfzustand: Z' = ZFf.

ABB 8. Prüfung der einfachen Formel für die Verdampfungswärme:

• Im reduzierten Massstab $p\Delta V/RT_k = f(T/T_k)$ treten wiederum stoffspezifische Abweichungen von einer gemeinsamen Kurve proportional log T_k auf.¹³ Es gilt z.B. für $T/T_k = 0.65 \ p\Delta V$ $RT_k \sim 0.485 + 0.06 \ \log T_k$.

Für Stoffe mit $T_k > 300^{\circ}$ K können danach die Abweichungen von $p\Delta V/RT_k$ gegenüber RT/RT_k näherungsweise durch einen gemieinsamen Kurvenzug dargestellt werden.^{8,3} Abb. 8 gibt einen Überblick über die Leistungsfähigkeit der Gl. (11), wobei die vollen Punkte die experimentellen Werte von L_i angeben und die hohlen Kreise die Werte von $L_i/(1 - 2 F)$. Starke Abweichungen von der G. (11) treten insbesondere bei Äthylamin und Diäthylamin auf. Bei beiden treten aber schon anhand der zugänglichen Messdaten Abweichungen von der Gradlinigkeit von $\rho_{\rm Fl} + \rho_{\rm D}$ auf.

Die folgende Tabelle 1 gibt die aus dem Achsenabschnitt ermittelten Werte für f unter der Annahme von Z = 12 für die dichteste Kugelpackung an.

TABELLE I		
Substanz	Z.f	f
C ₂ H ₃ OC ₂ H ₃	14.5	1.2
CCI	12-4	1.03
C6H6	12.82	1-06
C6H3Cl	14-4	1-2
C ₆ H ₅ Br	12.88	1-07
C6H3	13-8	1-15
Naphtalin	14-36	1.2
HCI	10.1	0-84
NH,	13.8	1.15

Aus dem Schnittpunkt der Graden $L_i/(1-2F)$ mit der Abszissenachse lässt sich kontrollieren, ob der Faktor 3/2 vor R T_k in Gl. (11) korrekt ist. Dies ist bei den Substanzen der Abb. 8 in der Fehlergrenze von 5% der Fall.

Aus (11) folgt auch die Troutonsche Regel. Es ist : in der Näherung $T_y/T_k = \frac{2}{3}$

$$L_i(T_s) \sim \frac{ZfR}{2} (\frac{3}{2} T_k - \frac{2}{3} T_k) = Z/2fRT_s \, 1.25 \tag{12}$$

Nach der Tabelle 1 gilt: 12 < Zf < 14.5, also: $L_t(T_s)/T_k = 10$ bis 12 (cal mol⁻¹ grad⁻¹) $L_t(T_s)/T_s = 15$ bis 18 (cal mol⁻¹ grad⁻¹) oder: $L_p(T_s)/T_s = 17$ bis 20 (cal mol⁻¹ grad⁻¹).

Dies entspricht aber der Troutonschen Regel, nach der für organische Substanzen $L_p(T_s)/T_s$ -Werte zwischen 17 und 22 gefunden werden.

Die obige Überlegung gibt gleichzeitig Hinweise, wie Abweichungen von dem ursprünglich diskutierten konstanten Wert von 21 cal mol⁻¹ grad⁻¹ zu verstehen sind. Die Abb. 9 gibt einen Überblick über experimentelle Werte von $L_p(T_s)/T_s$. Sie zeigt, dass die meisten Werte von L_i zwischen 15 und 18 T_s liegen. Bei Stoffen mit kleinem T_k ist die Troutonsche Regel durch die prozentual stark ins Gewicht fallende Nullpunktsenergie E_0 der zwischenmolekularen Freiheitsgrade zu korrigieren.¹³ Nach Clusius¹⁴ ist zu setzen:

$$\frac{L_i + E_0}{T_*} \tag{13}$$

Die Kreuze in der Abb. 9 geben die so korrigierten Werte von L_i an.

ABB 9. Troutonsche Regel lautet im Löchermodell $(L_i/T_i) \sim 15$ --18.

• $L_{i} - RT_{i}$ $OL_{i} - p\Delta V$

() () () () () () () () () () () () () (He⁴ Ne Ar Kr Xe	(a) (b) (b) (c) (c) (c) (c)	H ₂ F ₂ Cl ₂ Br ₂ HJ	$ \begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \right) \\ \left(\begin{array}{c} \right) \\ \left(\begin{array}{c} \right) \\ \left(\begin{array}{c} \end{array} \\ \left(\end{array}{ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \left(\begin{array}{c} \end{array} \\ \left(\end{array}{ \end{array} \\ \left(\end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ } \\ \left(\end{array}{ } \end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ } \end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ } \end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ } \end{array}{ } \end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ } \end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ } \end{array}{ } \end{array}{ } \end{array}{ \left(\end{array}{ } \end{array}{ }$	19 19 19 19 19	Diphenyl n-Decan Anilin CH ₃ OH H ₂ O
Ť	Rn	0	CH4	G O ₂	9	1120

4. Die Oberf lächenenergie

Die Oberflächenspannung σ wird oft als Mass für die zwischenmolekularen Kräfte diskutiert. Dies ist jedoch nur bedingt richtig, da σ die Arbeit in erg angibt, die zur Vergrösserung der Oberfläche um 1 cm² aufzubringen ist. Für Strukturdiskussionen ist eine auf 1 cm² bezogene Grösse aber noch ungeeigneter als z.B. die auf 1g bezogene spezifische Wärme. Bei einem Vergleich von Werten verschiedener Substanzen wird auf verschiedene Molekelzahlen Bezug genommen, die bei Temperaturwechsel sogar für jeden Stoff variabel sind. Es ist daher schon von verschiedenen Seiten die Einführung einer molaren Oberflächenspannung σ_{M} empfohlen worden.^{15, 16} Sie wird bezogen auf die Arbeit, die notwendig ist, um ein Mol an die Oberfläche zu bringen. Es gilt :

$$\sigma_{\rm M} = \sigma \,.\, N_L^{\frac{1}{2}} \,V^{\frac{1}{2}} \tag{14}$$

 $(M/\rho)^{\frac{1}{2}} = V^{\frac{1}{2}}$ ist hierbei die Grösse der einen Oberfläche eines würfelförmig gedachten Mols. Ein solcher Würfel hat $N_L^{\frac{1}{2}}$ Schichten von der Dicke eines Moleküls. $N_L^{\frac{1}{2}} V^{\frac{1}{2}}$ ist damit die Fläche, die N_L Molekeln an der Oberfläche einer Flüssigkeit bilden.

Die Abb. 10 und 11 zeigen deutlich, dass bei Umrechnung von σ auf σ_M die Stoffreihenfolge geändert wird. Insbesondere verschwindet die Vorzugsrolle des Wassers. Die Grösse von σ (H₂O) ist stark durch die hohe Molekelzahl des H₂O in 1 cm² bedingt. Die molare Oberflächenspannung σ_M des Wassers ist. z.B. kleiner als die

ABB 10. Spezifische Oberflächenspannung σ im reduzierten Temperatur-Massstab T/T_k . H₂O hat im Vergleich zu organischen Stoffen ein relativ hohes σ .

ABB 11. Die molare Oberflächenspannung $\sigma_M = \sigma \cdot V^4 \cdot N_1^4$ ist die für Strukturdiskussionen geeignetere Grösse. Die dominierende Rolle des H₂O in Abb. 10 beruht demnach auf der hohen Molekelzahl pro cm².

ABB 12. σ und σ_M für Dioxan-H₂O-Mischungen zeigen grundverschiedene Kurvenverläufe (nach Messungen von¹⁷); mit eigenen Messungen bestätigt.

der Seifenmolekeln. Dies ist verständlich, da die zwischenmolekularen Kräfte mit der Atomzahl in einem Molekül ansteigen. σ_M sollte in homologen Reihen daher ansteigen. Dass H₂O ein höheres σ_M hat als CH₃OH oder C₂H₅OH ist erst ein Hinweis auf die besonders starken Wasserstoffbrückenbindungen des Wassers.

Insbesondere sollte σ_M auch für die Diskussion der Oberflächenspannungen in Mischungen herangezogen werden. Für eine binäre Mischung mit den Molenbrüchen der Komponenten γ_1 und γ_2 gilt dann:

$$V = \frac{\gamma_1 M_1 + \gamma_2 M_2}{\rho_{12}}$$

Allerdings ist eine Umrechnung auf σ_M ohne genaue Kenntnisse meist nur unter der Voraussetzung gleiche Konzentrationen in der Oberfläche und im Flüssigkeitsinnern möglich. Abb. 12 zeigt ein Beispiel für σ_M und σ für Wasser-Dioxan-Mischungen. Für σ_M tritt ein Minimum auf. Interessanterweise hat die Schallgeschwindigkeit v im gleichen Konzentrationsbereich ein Maximum, in dem σ_M ein Minimum aufweist (Abb. 13).^{*} Andererseits haben H₂SO₄--H₂O-Mischungen ein Maximum von σ ähnlich wie einige wässrige Salzlösungen. Dieses Ansteigen von σ wird oft als Verarmung der Ionenkonzentration an der Oberfläche gedeutet. Bei Umrechnung auf σ_M verschwindet jedoch dieses Maximum im Falle der wässrigen Schwefelsäurelösungen vollständig.

Der Abfall der σ Kurven wässriger Lösungen mit der Konzentration an organischen Substanzen ist molekular primär durch die Abnahme der Molekelzahl pro cm² bei Zusatz grösserer organischer Molekeln zu verstehen. Molekel mit hydrophoben Gruppen werden sich an der Oberfläche anreichern. In diesem Fall ist eine Umrechnung auf molare Einheiten sehr erschwert. Zu bemerken ist aber, dass die Erreichung etwa konstanter Werte für σ bei derartigen Losungen nicht unbedingt auf eine Erreichung einer monomolekularen Bedeckung der Wasseroberfläche deuten muss. Messungen der Monomeren- und der Mizellkonzentration an wässrigen Lösungen

^{*} Im $\sigma_M \sim \log c$ Diagramm erhält man für kleine C eine Grade.

ABB 13. Die Schallgeschwindigkeit v in Dioxan-Wasser-Mischungen zeigt ein Maximum, wo σ_{M} ein Minimum hat. Hinweise auf die Vorzugstellung von σ_{M} gegenüber von σ .

von hydrophobierten Polyäthylenoxydderivaten haben gezeigt,¹⁸ dass die Endwerte der Oberflächenspannung in dem Konzentrationsbereich erreicht werden, in dem das Gleichgewicht der Mizellbildung soweit auf die Bildung der Aggregate verschoben wird, dass die Monomerenkonzentration bei weiterer Konzentrationserhöhung nur noch wenig ansteigt. Die Grösse von σ ist also im wesentlichen durch die Monomerenkonzentration bedingt.

Auch die Temperaturabhängigkeit von σ_M ist einfacher als die von σ . Sie gehorcht bis kurz vor T_k der Beziehung:

$$\sigma_{\rm M} = k_1 (T_{\rm k} - T) \tag{15}$$

Es gelten z.B. folgende experimentelle Werte:

CCl ₄	$\sigma_{\rm M} = {\rm R} \left(2.16 \ T_{\rm k} - 2.17 \cdot T \right)$
C ₆ H ₆	$\sigma_{\rm M}={\rm R}~(2.14~T_k-2.16\cdot T)$
Diäthyläther	$\sigma_{\rm M} = {\rm R} \left(2.16 \ T_{\rm k} - 2.22 \cdot T \right)$
Chlorbenzol	$\sigma_{\rm M}={\rm R}~(2.07~T_{\rm k}-2.14\cdot T)$

TABELLE 2. MOLARE OBERFLÄCHENSPANNUNGEN

 σ bzw. σ_M sind mechanisch gemessene isotherme Arbeiten. Es ist zu beachten, dass bei isothermen Messungen das System mit der Umgebung Wärmeenergie austauschen kann. σ_M und σ werden daher als freie Energie aufgefasst¹⁹ und die Gibbs-Helmholtz Gleichung angewandt:

$$U_{\sigma} = \sigma_{\rm M} - T \frac{\partial \sigma_{\rm M}}{\partial T} \tag{16}$$

Gl. (16) definiert daher die eigentliche Oberflächenenergie U_{σ} . Aus verschiedenen

Messungen²⁰ berechnete U_{σ} -Werte zeigt die Abb. 14.* Bis zu etwa $T/T_k < 0.85$ ist U_{σ} temperaturunabhängig bei nicht zu polaren Stoffen. Dies wurde schon verschiedentlich in der Literatur diskutiert.

ABB 14. Oberflächenenergien $U_o = \sigma_M - T \frac{\partial \sigma_M}{\partial T}$ sind für normale Stoffe bis $T_T T_k < 0.9$ *T*-unabhängig

Allerdings ist in einigen Arbeiten die Temperaturunabhängigkeit nur näherungswiese als gültig angegeben. Das liegt daran, dass selbst in Standardwerken zum Teil irrtümlich die Beziehung benutzt wird:^{15, 19}

$$U'_{\sigma} = N_{L}^{i} \cdot V^{\frac{3}{2}} \left(\sigma - T \frac{\partial \sigma}{\partial T} \right)$$
(17)

Diese Beziehung ist nicht korrekt, da bei wechselnder Temperatur verschiedene Molekelzahlen pro cm²

* Aus Massstabsgründen konnten die Werte für ³He nicht in Abb. 14 aufgenommen werden. Die aus der Literatur berechenbaren Werte für ³He sind daher in der folgenden Tabelle angegeben.

T/T_k	U,
0.299	4.65
0.599	4.66
0-675	4.66
0-750	4.65
0.825	4.66

 U_{σ} ist auch $\lim_{T \to 0} \sigma_{M}$

auftreten. Die spezifische Oberflächenspannung bezieht sich nicht, wie etwa die spezifische Wärme, auf eine konstante Stoffmenge. Es gilt daher:

$$U_{\sigma} = \sigma_{\rm M} - T \frac{\partial \sigma_{\rm M}}{\partial T} = N_L^{\dagger} \left[V^{\dagger} \cdot \sigma - T \frac{\partial (\sigma V^{\dagger})}{\partial T} \right]$$
(18)

$$= N_L^* \cdot V^* \left[\left(\sigma - T \frac{\partial \sigma}{\partial T} \right) + \frac{2}{3} T \frac{\sigma}{\rho} \cdot \frac{\partial \rho}{\partial T} \right]$$
(19)

Da

$$\frac{\partial V^{\dagger}}{\partial T} = M^{\dagger} \frac{\partial (\rho^{-\dagger})}{\partial T} = -M^{\dagger} \frac{2}{3} \rho^{-\dagger} \frac{\partial \rho}{\partial T} = -\frac{2}{3} \frac{V^{\dagger}}{\rho} \frac{\partial \rho}{\partial T}$$
(20)

$$U_{\sigma} = U_{\sigma}' + N_{L}^{*} V^{\dagger} \hat{g} T \frac{\sigma}{\rho} \frac{\partial \rho}{\partial T}$$
(21)

also:

 $\frac{1}{10}$ $\frac{1}{10}$

 $U_a \neq U'_a$

Fehler bei Benutzung von U'_{σ} statt U_{σ} bei CCl₄.

Die Abb. 15 zeigt den Fehler bei Benutzung von U'_{σ} statt U_{σ} im Falle des CCl₄. Fast alle Autoren^{15, 20} verwenden U'_{σ} statt U_{σ} . Nur Bennett u. Mitchell^{20 σ} addieren als Ausgleich für diesen Fehler ΔF 10% zu U'_{σ} . ΔF ist aber temperaturabhängig in den Grenzen 0–10%. Echt konstante Werte von U_{σ} werden nur durch Anwendung der Beziehung (16) erhalten. Abweichendes Verhalten von der Beziehung $U_{\sigma} = k_1 T_k$ tritt bei H-Brückenbildnern oder stark polaren Stoffen wie H₂O, CH₃OH, CH₃COOH, SO₂, NH₃ oder C₂H₅OH auf. Die Temperaturkonstanz von U_{σ} kann so gedeutet werden, dass die Molwärme der Oberflächenmolekeln sich nicht von der Molwärme im Flüssigkeitsinnern unterscheidet.* Dies ist nicht nach den Überlegungen zur Verdampfungswärme nach dem Löchermodell zu erwarten. Nach dem Löchermodell kann für U_{σ} näherungsweise gesetzt werden:

$$U_{\sigma} = (Z - X) f \frac{3RT_k}{4}$$
(22)

wobei Z die Koordinationszahl im Innern und X an der Oberfläche sind.

ABB 16. $(Z - X) \cdot f$ aus U_{σ} .

Abb. 16 gibt einen Überblick über die nach Gl. (22) erhaltenen Werte für (Z - X) f. Mit Ausnahme von He und H₂ werden hierfür Werte von 2.6 bis 2.9 erhalten.

Bei dichtester Kugelpackung wäre Z = 12 und X = 9, also Z - X = 3. Dieser Wert 3 wird also bis auf 5% etwa erreicht. Die viel kleineren Werte für Z - X für He könnten für eine andere Packung sprechen. In der Tat ist für He eine von der kubisch dichtesten Packung verschiedene Symmetrie anzunehmen.²¹

Abb. 17 gibt einen Überblick über die nach Gl. (22) zu erwartende Proportionalität zwischen U und T_k . Für Substanzen mit kleinem Molgewicht (He, H₂ und Ne) ist wiederum eine Korrektur für die Nullpunktsenergie der zwischenmolekularen Freiheitsgrade durchzuführen. Für sie wird ein Anschluss an die Grade erhalten, wenn zu U_{σ} etwa $\frac{1}{3}E_0$ addiert wird. $U_{\sigma} + \frac{1}{3}E_0$ wäre also die wahre aufzubringende Oberflächenenergie, falls die Nullpunktsenergie zu vernachlässigen wäre.

Der Abfall von U_{σ} in der Nähe von T_k ist durch den starken Anstieg des Sättigungsdampfdrucks und den damit verbundenen zwischenmolekularen Kräften zwischen den Oberflächenmolekeln der Flüssigkeit und dem Dampfraum zu verstehen. Nach dem Löchermodell wäre zu erwarten, dass eine Korrektur (1 - 2F) an (Z - X) in Formel (22) diesen Effekt beschreibt. Experimentell ist der Abfall von U_{σ} jedoch kleiner als nach dieser Korrektur. Empirisch lässt der Abfall von U_{σ} sich etwa durch eine Korrektur $(1 - 4F^2)$ beschreiben. Es ist hieraus zu schliessen, dass eine detaillierte

[•] Einstein¹⁹ und danach andere Autoren sprechen davon, dass die Molwärme in der Oberflächenschicht Null ist. Dies ist jedoch auf die Differenz der Molwärmen zu korrigieren. (Vgl. N. K. Adam, *Physics and* Chemistry of Surfaces, Oxford Univ. Press, 1941.)

Diskussion der Oberflächenschicht für eine genaue Formel notwendig wäre. Wobei zu diskutieren ist, dass der Fehlstellenanteil in der Oberflächenschicht von dem im Flüssigkeitsinnern verschieden sein kann und andererseits auch die ersten Dampfschichten über der Flüssigkeit von dem Gleichgewichtsdampfraum verschieden sein können.

5. Der Stefan'sche Satz

In der Literatur wurde gelegentlich der Stefan'sche Satz diskutiert, nach dem der Quotient aus $L_v/U_{\sigma} \sim 2$ sein sollte.²² Experimentell werden hierfür im normalen Temperaturbereich jedoch Werte 3–4 gefunden.^{15, 23, 24} Diskutiert wird hierbei

$$\varphi = \frac{L_v}{U_\sigma} = \frac{Z}{Z - X}$$

Bei dichtester Kugelpackung ist für die 111 Fläche X = 9 und $\varphi = 4$; für die 100 Fläche ist X = 8 und $\varphi = 3$. Hieraus wurde¹⁵ geschlossen, dass in den normalen Flüssigkeiten die 100 Fläche bevorzugt an der Oberfläche vorhanden ist. Dies ist energetisch unverständlich, weil $U_{\sigma}(111) < U_{\sigma}(100)$ (vgl.²⁵). Der Denkfehler liegt in der Temperaturabhängigkeit von L_{ν} , worauf schon Eucken hinwies.¹² Das Stefan'sche Gesetz ist nur für T = 0 diskutierbar. Oder es ist zu bilden:

$$\frac{Z}{Z-X} = \frac{L_t(T=0)}{U_\sigma} = \frac{L_t/(1-2F) + (Z/2)fRT}{U_\sigma}$$
(23)

Abb. 18 zeigt deutlich die Abnahme von φ mit T und die Gültigkeit der Gl. (23). Es ist insbesondere für nicht zu polare Stoffe $\lim_{T\to 0} \varphi = 4$. Für H-Brückenbilder liegen andere Verhältnisse vor. Hierauf werden wir in einer besonderen Arbeit näher eingehen.

ABB 18. $\varphi = \frac{L_v}{U_{\varphi}}$ zeigt starke T-Abhängigkeit und ist daher nur für $T \to 0$ geeignet zur Bestimmung der Koordinationszahl.

ABB 19. Wechselwirkungsenergie $E/4 \varepsilon_0$ auf ein zwischen 2 im Abstand $2r_0$ festliegendes Teilchen als Funktion des Abstandes r/σ .

$$E/4\varepsilon_0 = \left(\frac{r_0}{\sigma} + \frac{r}{\sigma}\right)^{-12} - \left(\frac{r_0}{\sigma} + \frac{r}{\sigma}\right)^{-6} + \left(\frac{r_0}{\sigma} - \frac{r}{\sigma}\right)^{-12} - \left(\frac{r_0}{\sigma} - \frac{r}{\sigma}\right)^{-6}$$

6. Die potentielle Energie

Hinweise zum Verständnis des Löchermodells, das mit dem temperatur- und abstandsunabhängigen Wert RT_k für die potentielle Energie rechnet, können durch eine einfache Modellrechnung gewonnen werden. Hierzu rechnet man die Wechsel-

wirkungsenergie auf ein Teilchen, das auf einer Graden zwischen zwei festgehaltenen Teilchen sich frei bewegen kann. Unter Benutzung des additiven Lennard-Jones Potentials der beiden äusseren im Abstand $2r_0$ liegenden Teilchen auf das dritte erhält man die Ergebnisse der Abb. 19. Man erhält für $r_0 = 1.224 \sigma$ ein tiefes Minimum mit $E/4\varepsilon_0 = 0.5$. Bei einem Abstand $r_0 = 1.245 \sigma$, bei dem die Wendepunkte der beiden Lennard-Jones Potentialkurven sich gerade schneiden, erhält man eine Potentialkurve mit waagerechter Tangente für mehrere Werte von r/σ . Für $r/\sigma > 1.245$ treten zwei Minima auf. Der Abstand dieser Minima von dem benachbarten äusseren Teilchen liegt für alle r_0 im Bereich um 1·1224 σ , dem Minimum des Lennard-Jones Potentials zwischen zwei Teilchen. Bei Abständen $r_0 = 1.75 \sigma$, die nach der Dichte der kritischen Temperatur zugeordnet werden können, entspricht die Tiefe der beiden Minima in Abb. 19 der Wechselwirkungsenergie zwischen zwei Teilchen $E/4 \varepsilon_0 = 0.25$. Für die Berechnung der Wechselwirkungsenergie ist also der dritte Partner nicht "mitzuzählen" (Löcheranteil 50%). Im Bereich mittlerer Temperaturen ist die Tiefe des Potentialminimums grösser als die maximale Wechselwirkungsenergie zwischen zwei Teilchen 0.25. Dem wird im Löchermodell Rechnung getragen, indem ein Bruchteil eines weiteren Nachbarn über die Koordinationszahl, die mit der Löcherkonzentration F korrigiert wird, berücksichtigt wird.

Bei wasserstoffbrückenhaltigen Flüssigkeiten sind zusätzlich zu den normalen Fehlstellen noch Orientierungsfehlstellen zu diskutieren. Hierauf werden wir in einer weiteren Arbeit näher eingehen.

LITERATUR

- ¹ W. A. P. Luck, Chem.-Ing.-Technik 40, 464 (1968)
- ² R. C. Reid u. Th.K. Sherwood, Properties of Gases and Liquids 2. Aufl. McGraw-Hill, New York (1966);
 J. H. Perry, Chemical Eng. Handbook 4. Aufl. S. 3-213. McGraw-Hill, New York (1963)
- ³ W. A. P. Luck, Ullmann Enzyklopädie 4. Aufl. Verl. Chemie, in Druck
- ⁴ R. Lorenz, Z. Anorgan. Chemie 94, 240 (1916)
- ⁵ E. Bresler, Acta Physicochim UdSSR 10, 491 (1939)
- ⁶ E. Cremer, Z. Phys. Chem. 193, 287 (1944)
- 7 H. Eyring, Ibid. 4, 283 (1936)
- ⁸ W. A. P. Luck, Messmethoden und Modelle zur Flüssigkeitsstruktur in Vorbereitung
- ⁹ S. O. Morgan u. H. H. Lowry, J. Phys. Chem. 34, 2417 (1930);
 O. K. Verstraete, Bull. Soc. Chim. Belg. 43, 536 (1934)
- ¹⁰ A. Eisenstein u. N. S. Gingrich, *Phys. Rev.* **62**, 261 (1942);
- s. auch A. H. Narten, M. D. Danford and H. A. Levy, Disc. Far. Soc. 43, 102 (1967)
- ¹¹ W. A. P. Luck und W. Ditter, Ber. Bunsenges. 70, 1113 (1966)
- ¹² A. Eucken, Lehrbuch der chem. Physik Bd. 2, 2; S. 537. Akadem. Verlagsgesellschaft, Leipzig (1944)
- ¹³ K. Bennewitz u. F. Simon, Z. Phys. 16, 197 (1923);
 F. Simon, Nature, Lond. 133, 529 (1934)
- ¹⁴ K. Clusius, Die Chemie **56**, 241 (1943);
- vgl. Z. Phys. Chem. 2, 77 (1929); 42, 111 (1939); Z. Physik 16, 183 (1923)
- ¹⁵ K. L. Wolf Physik und Chemie der Grenzflächen. Springer Verlag, Berlin, Göttingen, Heidelberg (1957)
- K. Schäfer Physikalische Chemie 2. Aufl. Springer Verlag, Berling, Heidelberg (1964)
 F. Hovorka, R. A. Schaefer u. D. Dreisbach, J. Am. Chem. Soc. 58, 2264 (1936);
- Gmelins Handbuch der anorgan. Chemie 8. Aufl. Bd. Sauerstoff Lieferung 6, System Nr. 3, Verlag Chemie, Weinheim (1964) S. 1799
- ¹⁸ W. Luck, III. Internat. Kongr. für Grenzflächenaktive Stoffe, Köln Bd. I. Sekt. A, (1960) S. 264: Angew. Chemie 72, 57 (1960)

- ¹⁹ H. Staude, Phys.-Chem. Taschenbuch Bd. I, S. 912. Akad. Verlagsgesellschaft, Leipzig (1945)
 A. Einstein, Ann. Physik 4, 513 (1901);
 E. T. Whittaker, Proc. Roy. Soc. 81 A, 21 (1908);
 W. D. Harkins, C. H. Davies u. G. L. Clark, J. Am. Chem. Soc. 39, 553 (1917);
 W. D. Harkins in: J. Alexander, Colloid Chemistry Chemical Catalog Co. New York (1926);
 H. Freundlich Kapillarchemie 4. Aufl. Bd. I, S. 43, Akad. Verlagsgesellschaft, Leipzig (1930);
 A. Adamson, Phys. Chem. of Surfaces Interscience Publ. New York (1960);
 T. Davies u. E. K. Rideal, Interfacial Phenomena S. 11, Academie Press (1961)
- ²⁰ F. B. Sprow u. T. M. Prausnitz, Trans. Farad. Soc. 62, 1097 (1966); Landolt-Börnstein, Physikalisch-chemische Tabellen, Bd. I, II, III, 5. Aufl. Springer Verlag, Berlin (1931-1936);
 - N. Ramsay u. J. Shields, Z. Phys. Chem. 12, 433 (1893)
- ²⁰ ^a G. M. Bennett u. A. D. Mitchell, *Ibid.* 84, 475 (1913)
- ²¹ W. H. Keesom u. K. W. Taconics, *Physica* 5, 270 (1938);
 J. Reekie u. T. S. Hutchison, *Phys. Rev.* 92, 827 (1953); *Proc. Roy. Soc.* 228 A, 365 (1955);
 D. G. Henshaw, *Phys. Rev.* 109, 328 (1958)
- ²² K. Jellinek, Lehrbuch der Phys. Chemie Bd. 1, S. 909. Verl. Enke, Stuttgart (1928);
 R. Kaischew, Z. Phys. Chem. 23, 158 (1933)
- ²³ R. Grafe, Nova Acta Leopolchim 12, 143 (1942)
- ²⁴ K. L. Wolf, Theoretische Chemie 2. Aufl. S. 367, J. A. Barth Verlag, Leipzig (1948)
- ²⁵ W. Luck, M. Klier u. H. Wesslau, Naturwissenschaften 50, 485 (1963)